Более эффективное привлечение и удержание клиентов за счет повышения релевантности контента
Big Data позволяет маркетологам с потрясающей точностью изучить, какие темы и виды контента интересуют аудиторию бренда. Анализируя данные пользователей с помощью Big Data, можно предлагать им максимально релевантный контент. Важно избавиться от мысли, что сайт и аккаунты бренда в социальных сетях — это статичный маркетинговый актив, который воспринимается всеми одинаково.
Компании, которые предлагают персонализированный контент, сильно выигрывают на фоне конкурентов, учитывая, сколько контента борется за внимание аудитории ежедневно. По данным SmarterHQ, предоставление персонализированного контента позволяет увеличить лояльность к бренду среди миллениалов в среднем на 28%.
Персонализация e-commerce
Big Data оказывает огромное влияние на интернет-коммерцию и дает брендам возможность увеличить доход от онлайн-покупок. Аналитика, полученная с помощью больших данных, помогает предсказать предпочтения пользователя, подготовить персонализированные рекомендации и оптимизировать цены, чтобы увеличить маржинальность продукции.
По данным McKinsey, увеличение цены на 1% может привести к повышению операционной выручки на 8,7%, если не наблюдается спад в объеме продаж. Таким образом, Big Data представляет особый интерес для бизнеса, поскольку позволяет оптимизировать цены.
Big Data можно использовать для формирования релевантных рекомендаций. Когда речь заходит об апселлинге и перекрестных продажах, компании используют анализ с помощью больших данных, чтобы изучить поведение и предпочтения потребителя, а также его историю покупок. В результате формируются максимально релевантные и персонализированные предложения. Вероятность того, что потребитель просмотрит продукты, рекомендованные на основе информации, которой он поделился с компанией, на 40% выше.
Оптимизация кампаний и сокращение расходов
Маркетологам приходится сражаться за внимание пользователей на постоянно растущем количестве каналов. К тому же путь покупателя фрагментирован, и потребители часто переходят с одного канала на другой прежде чем совершить покупку. Поэтому определить, как эффективно распределить бюджет по каналам — задача не из легких.
Big Data помогает определить, какие каналы приносят наилучшие результаты, и в соответствии с этим распределить бюджет. Моделирование атрибуции позволяет маркетологам создать карту пути покупателя для разных сегментов аудитории и предсказать, какие точки взаимодействия окажут наибольший эффект на рост продаж.
Таким образом, Big Data приводит к сокращению расходов. Если верить Invespcro, 83% маркетологов, которые при подготовке кампаний ориентируются на аналитику больших данных, добиваются увеличения ROI в 5 раз.
Больше таргетированной рекламы
С доступом к данным о предпочтениях и поведении пользователя, а также о внешних факторах, оказывающих на него влияние, маркетологи могут сформировать более персонализированные рекламные предложения. Анализ того, как люди взаимодействуют с брендом, позволяет выявить паттерны и тренды, которые помогают сделать рекламу более релевантной и привлекательной для потребителей. Детальная характеристика различных сегментов аудитории дает возможность создать lookalike-аудитории и найти похожих пользователей, которые раньше не взаимодействовали с брендом.
Повышение персонализации увеличивает эффективность рекламы и помогает сократить затраты на «пустые» клики. Пользователи остаются в выигрыше, потому что получают полезную рекламу, а бренд — потому что повышается эффективность и увеличивается ROI.
Улучшение тестирования
Возможность обрабатывать большие объемы данных и находить в них инсайты за короткий промежуток времени позволяет маркетологам проводить тестирование в ранее недоступных масштабах и с удивительной точностью.
Вместо того чтобы тестировать одну вариацию маркетингового актива, можно сразу изучить несколько вариаций и единиц данных, чтобы получить более полезные инсайты. К примеру, вариации лендинга могут быть протестированы на разных сегментах целевой аудитории. Демографические данные, предыдущие взаимодействия с сайтом и другие источники информации обрабатываются, чтобы определить, какая из вариаций наиболее эффективна для конкретного сегмента аудитории.
Big Data становится незаменимым инструментом для бизнеса и маркетологов. Большие данные позволяют делать пользователям более полезные и релевантные предложения. В результате — повышение ROI, увеличение лояльности потребителей и получение конкурентного преимущества.